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Introduction. 

This paper can be regarded as a continuation of our study 

In [6]. In that paper we considered the kernels and the 

bargaining sets (lib ^      (for the grand coalition) of convex 

games. We succeeded in characterizing the bargaining set, 

which, like the von-Neumann Morgenstern solution (see [14]), 

turned out to coincide with the core of th. game. As to the 

kernel - we were only able to prove that it lies in the 

relative interior of the core;  but we did not locate its 

exact position. 

> J|  «-I 
In this paper we prove ^that the kernel (for the grand 

coalition) of a convex game consists of a unique point and we 

^oharaoterize its location geometrically.  Roughly speaking, 

the kernel is obtained by "pushing inside" at equal t,- 

distances certain hyperplanes which support the core, stopping 

the push of a hyperplane short of causing the inside to become 

empty.  Thus, in general, the kernel differs from the Shapley 

value which is essentially the center of gravity of its core. 

(see [14]). 

Every attempt has been made to render this paper self 

readable;  yet, clearly, familiarity with the current literature 

is advisable. 

In order to achieve our goals we had to extend known results 

about the kernels of monotonic games and to study the structure 

riMMLaaAiaili ^Mte 



of the core of convex games - subjects which are interesting in 

themselves. For this reason, when space considerations did not 

direct us otherwise, we stated and proved some of the theorems 

in more generality than needed for the specific goals as stated 

in the second paragraph of this introduction. 
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2,       The Structure of the Paeudo Kernel for Monotonie Games. 

Throughout most of this paper we shall be concerned with 

a cooperative monotonic n-person game with a non-negative 

characteristic function.  Such a game will be denoted by 

(ll;v) where N = {1,2,...,n}  is its set of players and 

its not necessarily superadditive characteristic function, by 

definition, satisfies* 

(2.1) v(S) a 0    all coalitions S, S c N. 

(2.2) v(S) *  v(T) whenever S c T c N. 

Note that  (2.1) can be omitted if we introduce the empty 

coalition ana define 

(2.3) v{0O = 0. 

Given an n-tuple x = (x^jXp,...,x ) of real numbers, 

we define the excess of a coalition  ^ with respect to 

x (in (N;v)) to be 

(2.4) e{S,x) ■ v(S) - x(S), 

where x(S)  is a short notation fo  ^.€S x.  for S ^ 0 

and x(^) = 0. 

*The results of this and the next sections with the excep- 
tion of Remark 3.5 will remain true if (2.2) is replaced by 
the weaker condition: v(S) < v(T) whenever S c T for 
T ^N (quasi monotonicity) and v({i}) + v(N) 2 v(3)  for all 
i€5 and S c N - {i} (condition a) (See [5].) 
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An n-tuple x = (x..Xp,....x ) will be called a pseudo- 

imputation*  (in  (N;v)) if it satisfies 

(2.5) xi 2 0,    i = 1,2,...,n, 

(2.6) x(N) = v(N). 

For each n-tuple    x =  (x^x^,...^  )    we define the 

maximum surplus of a player    k    against a player    I,    1c / t, 

with respect to    x    to be 

(2.7) a.    .(x)  ■        Max e(S,x). 
K'*' 3:keS,tXS 

"Definition 2.1.**    Let    r B   (N;V)     be a cooperative n-person 

game whose characteristic function  satisfies  (2.1).     A psevclo- 

imputation    x    is  said to belong to  the  pseudo-kernel  of    T 

(for the grand coalition),   if 

(2.8) 3^ ^(x)  i st k(x)     or    x^  = 0 

for all    k,t€N,  k / -t. 

The pseudo-kernel  of    r     (for the grand coalition)  will  be 

denoted by       PK   (r) or,   shortly,   by      PK .     It  is known 

that it is never empty  (see [4],[5]). 

*The term "pseudo"  comes to  denote  that  the usual  individual- 
rationality requirement is replaced  by the weaker condition 

The definition  can  be extended  to  cover situations  in which 
coalition structures  other than  the grand coalition are formed 
(see  [2]). 
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It is proved in [5]* that if r satisfies the monotonicity 

condition (2.3) in addition, then "or xt = 0" in (2.8) is 

redundant and (2.8) simply becomes 

(2'8)a  8k t(x) " 8-t,k(x)   for a11 k. ^» k ^ *" 

Relations (2.7) - (2.8) show that the pseudo-lremel is a 

finite union of closed convex polyhedra.  In this and the next 

section we shall characterize them and derive properties con- 

cerning the structure of the pseudo-kernel which somewhat 

generalise results stated in [4], [5] for the special class 

of games satisfying (2.2), (2.3).** 

Let T ■ (B;v)  be a game satisfying (2.2), (2.3) and 

let x be an n-tuple of real numbers.  We can partition the 

set of coalitions into subsets ©  Cx),  B~(x),..., J^U) 

which are of the highest excess, of the second highest excess, 

etc.  Thus, 

(2.9) i\x) m  [Si  e(S,x) » e(T,x)  all T} 

(2.10) §i+1(x) ■ {S: Sj^ |f1(x) U  82(x) U...U ^i(x) 

and e(S,x) i e(T,x)  whenever 

T^ t1(x)u H 2(x)U ...U Si(x)}, 

i = 1,2,...m and m = m(x) is the highest index i for 

which 8 i(x) is not empty.  Clearly,  1 < m « 2n. 

•Corollary 3.9 in [5].  Note that K in this corollary 
as well as in the proof is wrong.  It should be replaced by PK 

**Similar generalizations for arbitrary games are straight- 
forward but longer to state.  At any rate, they are not needed 
in this paper. 



We shall refer to the coalitions in 6 (x) as the i-th 

stage maximum excess coalitions.  Their excess s (x) will be 

called the i-th stage maximum excess. 

(2.11) si(x) = e(S,x)    where S€|i(x). 

Given that x is a pseudo-imputation, it is possible to 

tell from the sets 0 (x) whether x€ PK(r).  Indeed, let us 

define 

(2.12) i(k,.t,x) ■ Min {i:3 Setli(x), lc6Sf 10). 

Clearly, 

(2.13) \flU)  = si(k't'x)(x) 

(see (2.7)). The following lemma follows from (2.8) and (2.13). 

LEMMA 2.2: Let r ■ (N;v) be a monotonic game having a 

non-negative characteristic function. A pseudo imputation 

x belongs to PK(r) if and only if i(k.t,x) = i(t,k,x) 

for each pair of distinct players k and I. 

We can now reverse the procedure. Consider an arbitrary 

vectorial partition* (ß ,ö2»...fßm) of the set of all the 

coalitions which has the property 

*It is important to remember which coalitions belong to 
what stages.  Thus, for N = {1,2,3) we consider U^fN}, 
{(V),{13),[2.3)j. {{1),{21,{3)1) to be different from 
UiZW, {(l),{2l,{3!), {(1,2), {1,3), {2,3))).  This is 
why we use the vector notation and call the partition vectorial. 



(2.14) i(ktO = iU,k)    for all    t.kEN,    I / k, 

where 

(2.15) i(k,-t)  s Min  {i:  3  S€   ö1,  k€S,  t/S}. 

Every paeudo-lmputation    r    satisfying 

(2.16) ^i(x)  =      ^i, i =  1,2,...,m, 

must belong to PK(r).  Moreover, by scanning all possible 

vectorial partitions, une obtains all the points of the 

pseudo-kernel. 

Observe that the set of pseudo-imputations satisfying 

(2.16) for a fixed vectorial partition is a convex polyhedron. 

Indeed, its closure is the solution of the system of weak 

linear Inequalities 

/"x(N)  = v(N), 

(2.17)-/ xi i 0,    i =  1,2,...,n, 

\^e(S,x/  i e(T.x) whenever    Se&u,  T6 ^v, M < vu 

provided that it  is not empty. 
Our next object,  therefore,  is  to  find conditions which 

assure us that a vectorial partition satisfies  (2.14).     The 

following definition will  be quite helpful: 

Let     (j    be a  collection of subsets of    N    and let    T 

be a fixed subset of N.    Let    {T1,T,,..„,T }     be the partition 

of    T    characterized  by: 

(2.18)      k,t€T.  <—>   (k,t€T    and    k€A    if and only if 
J 

itA for all Ae 6) 

-, ■ ,  — 



8 

Thus, the T.'a are equivalence classes under the relation 
J 

"occur simultaneously in the coalitions of B". 
Definition 2.3:    The set    {T1,T2,..„,TU)  defined by (2.18) will 

be called the partition of    T    into equivalence classes induced 

Let  Cm  (6   »fo   ,...,ü   )    be an arbitrary vectorial part- 

ition of the set of all the coalitions among members of N.    We 

shall  construct by induction a profile    ViC.)    generated by £ * 

We start by denoting {N) also as {T^. Suppose that 

{T^.Tg,...,TU } has been defined, and it is a partition of N. 

Let    {Ti+],       Ts+o....|Ti+J  )     be the set of equivalence classes 

which are induced by    h        on    T  ,     J  =   ',2,...,u..     Renumber 
si 

the    T'V      lexicographically in  the lower indices to form 

{T^ + 1,   TJ 
+

 
1   T^+1  }.     The collection    P(£Ö  ■  {ihlf,..,,!   } 

„m+l - +1 i+1 ^ 
T^"*",...,  TJ?*     ) will  be called the profile generated 

by   LZ ,     The term is suggested by the diagram be]ow. 

T] ■ N 

T? T^ i2 T2 u2 

T3 I| I3 

•u3 

•     • • 

• • •   • 

•    • • •        ... 

• •          c   .     . 

T^+1 

•   • •     •     •     • .um+1 
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Clearly, 

i+l    mni+'' 
1m+ 

(2.1?)  (T^+1 Tj+1 } = {(1}, {2)  {n}} 
m+1 

and, in general, the equivalence classes will become 1-person 

seta also for stages with a smaller index. 

Lemmas 2.4 and 2.5 follow directly from the definitions. 

LEMMA 2.4:  If  1 ^ i0 < i-, « m + 1,  then 

in   il ii     ^ 
(2.20)  T.u n T ' / 0 implies T. ' c T,u. 

LEMMA 2.5;  If S€ o1 then S i£ a union of sets 

LEMMA 2.6:  If S6 B 0 then S i£ a union of sets 

il T, 's whenever i0 < i1 < m + 1. 

PROOF: This is a consequence of the previous two lemmas and 

from the fact that {T^,.,.,T„ )  is a partition of N. 
ui 

Henceforth, the profile P (£(x)) generated by the 

partition ^"(x) ■ ( S1 (x), C? (x),. . . , l5m(x)) will be called, 

shortly, the profile of x. 

Lemmas 2,4 - 2.5 indicate that the profile can be described 

as a "partition tree"; namely as a tree whose vertices are the 

sets T., T1 e N being its root, such that the vertices that 

are below a vertex T^ and are adjacent to it form a partition 

of Ti 
J 
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One of the advantages of the profile P(^) of a vectorial 

partition C.     of the set of coalitions is the fact that it 

enables us to state the condition (2.14) in a more visual 

fashion. 

THEOREM 2.7t Let ^Z = c & f O ,..., C? )  be a vectorial 

partition of the set of coalitions in N. Let P(^) be 

the profile generated by £ ,     The condition (2.H) is 

equivalent to the following condition! 

The separation condition.  If TJ
+1
 C TJ, TJ

+1
 C TJ and 

k ^ t,  then there exists a coalition S in 6  such 

TJ + 1 c S and TJ+1 n S = j2f. 

in*1   in*1 
PROOF:  Suppose (2.14) is satisfied. Let T,u  ,  T.w   be 

i 1+1 0 0 subsets of T. . Consider a player In T,    and a player in 

V1 
T^        whom,  without loss of generality,  we  call players    k 

and    t,     respectively.     Clearly,     k€A <~    :> <t6A,  whenever 

ACo1    and    i « i0 -   1   (Lemma 2.4).     Since    k    and    I    belong 

to  different  equivalence classes  of the stage    i0 +   1,     either 
^ i0 there exists a  coalition  in    O      ,     containing    k    and not 

^ i0 containing t, or there exists a coalition in (3    containing 

K    and not containing k.  By (2.15), either i(k,0 = in or 

i("t,k) = iQ;  hence, by (2.14),  i(k,0 = IQ.  Consequently, 

gl0 by  (2.15),   there exists a coalition    S    in    c3 containing 
io+1 

k    and not  containing    t.     By Lemma 2.5,     S => T, and 
V1 

T. (1  S = ^;     therefore,   the  separation  condition  is  satisfied. 
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Conversely,   suppose  that  the separation condition is satis- 

fied.    Let    k    and    I be two  distinct players.    There exists an 

index    i0    such that    k,t€ T.      and    k,-t    belong to two  distinct 

equivalence classes of the stage    ln +  1     which,  without loss of 
V1 V1 

generality,  we name    T^ and    T^       ,   respectively.     By the 

separation condition,   there exist coalitions    R    and    S    in 

5   0    such that    k€R,    t/R,  -U3,    k^S.     By Lemma 2.4, 

tgA <^=5» tCA    whenever    A€ & ,    i *  i0 -   1.    Consequently, 

by    (2.15),    i(k,t)  = iU,k)  = i0    and  (2.U) is satisfied. 

This completes the proof. 

COROLLARY 2.8t    Let    r ■   (N;v)    be a monotonic game having a 

non-negative characteristic function.     Let 

PC^Cx)) -   (T];   T
2

V  T^,...,  T2   J...;^
1
,^

1 T^+1   } 
2 ' m+1 

be the profile of a pseudo-imputation x.  With this notation. 

x6 PK(r) if and only if the separation condition in Theorem 

2.7 with S1  = Gi(x) is satisfied, i = 1,2,...,m. 
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3.  The Stage Game. 

From a visual point of view, a profile may contain smaller 

profiles.  The figure below exhibits one profile within the 

original one. 

•  •  • •  •  •  •  • 

This suggests that smaller games can be constructed from the 

original game, which contain fewer players.  Such games can 

serve for induction purposes. 

If one examines Theorem 2.7, one finds that only the 

equivalence classes play a role in each stage and not the 

individual players.  Even the maximum excess coalitions of the 

various stages are unions of such equivalence classes (Lemma 

2.5).  This suggests that it is possible under an appropriate 

interpretation to regard the equivalence classes themselves as 

players in some certain games.  In the present section we shall 

develop these heuristic ideas in a precise way. 

Definition 3.1^ Let r ■ (N;v)  be a monotonic game with a 

non-negative characteristic function. Let x be a non-negative 
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n-tuple and let P(£U)) = [l]; T^,..., T^ ;...; T^+1,. .. ,T^+1 } 
2 m+1 

be the profile of x. 

Let T* = {Tj f Tj ,...,T^ } be an arbitrary set of equivalence 

classea belonging to a fixed stage i. The stage game generated 

by x and T* is a game (T*; v*) whose players are the 

members of T* and its characteristic function is defined by 

v*(T*) = x(ri ) + x(T^ ) +...+ x(ri ) = x(T) 
Jl      J2 Ja 

(3.1) -<( v*(S*) =   Bfax   v(SUQ) - x(Q), 0 J S* c  T*,SVT* 
Q:Q c N-T 

yw = o. 

Here, T ■ T^ U...U T^  and if S* = {T3; , ...,T^ } c T*f J1      Ja v 1     v ß 

then 3=1^ U...U T^ . v1      vß 

Remark 3.2!  The stage game (T*;v*) satisfies (2.1) and (2.3). 

It is also quasi monotonic (see first footnote in Section 2.) 

Definition 3.3: A pseudo imputation x is said to belong to 

the core of the game if, 

(3.2) e(3,x) « 0    all S. 

Remark 3.4? A pseudo imputation which belongs to the core is 

an imputation (see second footnote in Section 2.) 

PROOF:  Individual rationality is nothing but (3.2) restricted 

to single-person coalitions. 
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Remark  3.5:     The  stage game    (T*;v*)     13^ monotonic if    x     belongs 

to the core of the game.* 

We are now in a position to  state  the main theorem of  this 

section: 

THEOREM 3.6:     Let    T ■   (N;v)   be a monotonic game having a 

non-negative characteristic function.     Let    x6 PK(r)    and 

let    T* ■   (T*;v*)     be a stage game generated by    x    and a 
* i i set    T* =  {T-!:   ,. . . ,   T^  }    of equivalence classes of an  i-th 

stage,     1  « i « m +  1.    Denote by    x*    the    a-tuple 

x*    -    (x(ri   ) x(T^  )). 

■ 

Under these conditions,    x*    belongs  to    PK(r*). 

PROOF:     We shall use  stars to denote entities related  to  the 

game F*.     Clearly,     x*     is a pseudo-imputation in    T*     (see 

(3.1)).     Consequently,   there is nothing more  to prove  if    a  =   1. 

Suppose    a >  1.     Since we  do not know if    r*    is monotonic,   we 

have  to use a starred analogue of   (2.8)  for the definition of 

its pseudo-kernel.     However,  since  every pseudo-imputation 

satisfying  (2.8)       automatically  satisfies   (2.8),   our proof 

will   be  completed  if  we   show that    x*     satisfies 

(3.3) a*       .(x*)     =    s*   .      .(x*) 
P,    O O.    p 

*This  result  does  not  necessarily hold   if»instead  of   being 
monotonic,    T     is  quasi  monotjnic  and  satisfies  condition    a 
(see first footnote  in  Section 2), 
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for all pairs  (p,o),  p / o,  p^o € (J-],... ,da}.  Here, 

(3.4)   s*  ,(x*) ■ Max (e*(S*,x*): 

1     'ß 

p€ {v^... , Vgl,  o/ tv^..., Vgl ] , 

and 
ß 

(3.5)   e*(S*,x*) ■ v*(S*) - 1 x*^ ) 
U=1    \ 

if s* = {TJ ,..., TJ ). 
v1     vß 

By (3.4) and (3.1), 

s*,  ,(x*) = Jtox {  Max   edi U...UT^ U Q.x): 
T1,!?; Q:Q c N-T   v1     vß p' o 

pe {v1;..., vß) c {j^.,., Ja}, a4  {vp..., Vg} } = 

m  Max {e(S,x): k€S, t/S} ■ 3k t(x), 

where k is any player in ür and t is any player in T^. 

The argument for the validity of the last equality (not counting 

the identity sign) runs as follows: A priori,  there should be 

there an .nequality sign ^, because the set of candidates 

increases.  By (2.13), s^ /(x) = a ^ ' »^(x).  Moreover, since 

T  and T^ are distinct equivalence classes cf the i-th stage 

and k€ T1 46 TJ,  it follows that in the profile of x, k and 

t belong the first time to two disjoint equivalence classes at 

a stage not later than i.  Since x6 PX(r),  it follows from 

aaBaM^^^^^^^ 
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Lemma 2.2,   that     idc^x)  «  i -   1.     Let    S0    be a coalition 

containing    k    and not containing    I    such that    3,    . (x)   = 

e(S0,x)<     By  (2.7),     30e § i(k't'x)(x).     Since    i(k,l,x)  «  i -  1, 

it follows from Lemma 2.6 that    3°  is a union of equivalence 

classes of  the     i-th stage and,  moreover,     3° D TJ,   S0nT^  = 0. 

Thus,     3°  = T1  U...U T^ UQ    where     {v.,..., vQ]     is a  subset of v1 vß iß 
{J •)»••• »Ja}     containing    p    and not  containing    o    and    Q c N-T. 

It is therefore a member of the smaller set of caididates,  which 

proves  the equality mentioned above.     In a similar fashion we 

prove that    s*.     . (x*) = s.  ^(x)    and since    x€ PK(r)     it now 
O'     p 

follows  that x*e PK{r*). 

Remark  3.7:     If    T*     is the set  of all  the equivalence  classes 

of stage m +  1     and    x    is a pseudo  imputation,   then,   by  (3.1), 

the stage game     (T*;   v*)    is  isomorphic  to the game     (N;v).     The 

transformation     {k}  < > k    leads  from one game  to  the  other. 

Thus,   the  converse  of Theorem 3.6,   namely,    x*€ PK   (F*)     for 

every stage game   (and,   in particular,   the   (m +  1)-th stage game 

implies    x€ PK(r)   is  trivially true. 

Remark  3.8:     Theorem  3.6 generalizes results of [5].     The  stage 

game in which    T*     consists of all   the  equivalence classes of a 

given svage  is known as an Intermediate  game.     The  stage game in 

which    i  = m +   1     and    U-j,..., da]     are players of a given    T.0 

is known as a reduced game. 
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4.  The Stage Games resulting from an Imputation in the core of 

a convex game. 

A cooperative game (N;v) is called convex if its character- 

istic function v satisfies 

(4.1) V(J20 = 0 

(4.2) v(A) + v(B) i v(AUB) + v(AnB)    all A.B c N. 

Convex games were  introduced in [H],   where Hheir properties, 

their importance in game theory and applications were discussed. 

In particular,  it was  shown that such games have non-empty cores.* 

In [6] we proved that  the kernel for the grand coalition of a 

convex game is contained in the relative  interior of the core. 

In this section we shall show that for ar    x    in the core of a 

convex game, all the  stage games are also  convex.    We shall also 

study the nature of some of these stage-games. 

Convex games are  super-additive but not necessarily monot- 

onic.     However,   if  the  characteristic function satisfies 

(4.3) v({i))  a  0, i =  1,2,...,n, 

then monotonicity follows from super-additivity.  In particular, 

(2.1) follows from (4.1) - (4.3). 

Note that (4.2) is equivalent to 

*Moreover, they are characterized by the fact that their 
cores are regular. 

I   I mi—<i—^, 
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(4.4) e(Atx) + e(B^) s e(AUB,x) + e(AnB,x) 

for all A,B c N and for any arbitrarily chosen fixed n-tuple x. 

THEOREM 4.1:  If r ■ (W;v)  is a convex game and x belongs 

to its core, then each stage gam a generated b^ x i^s convex, 

If, furthermore, T    has a non-negative characteristic 

function then this property passes on to^ the stage games. 

PROOF; Let  (T*;v*) be a stage game generated bj  x.  Since x 

is in the core it follows that (3.1)  is equivalent to 

fvM*) = x(T^ ) + x(T^ ) +..(+ x(T^ ) 

(4.5) { h h 0a 

\ v*(S*) =   Max   [v(SUQ) - x(Qll, S* c T*, S* ^ T*t 
^       Q:Q c N-T 

where T = T^ U...U T^  and if S* = {T*  .., T1 ) , 
J1      Ja v1      ^ß 

, 

{VT,..., VB1 C {J^ j },  then S = T^ U...U T^; .  Clearly, 
i      p      i     a v1      vß 

if v(S) > 0 for each coalition S then v*(S*) 2 0 whenever 

S* c T*.  It remains to show that 

(4.6) v*(3*) + v*(R*) i v*(3*UR*) + v*(3*nR*) all 

S*,R* c T*. 

Relation (4.6) evidently holds if S* c R* or if R* c S*. 

We can therefore assume that 3*, R* / T*.  Let S and R be 

the unions oT the members of 3* and R*f respectively.  By 

(4.5), there exist Q-, and Q2  in N-T such that v*(3*) + 

+ v*(R*) = v(SUQ1) - x(al) + v(RuQ2) - x(w2) ^ v((SUR)U (Q1UQ2)) + 



PiPJPiiim^^"*^'.- 

19 

+ v((SnR) u (Q.nQp)) - xCQ^Q«) - xCQ.OQ,) i   Max  [v{(SUR)UQ)- 
d ^     d d Q:Q c N-T 

- x(Q)] +   Max   TvCOnR) U Q) - x{Q)] =   Max  (v((SUR)UQ - 
QtQ c N-T Q:Q c N-T 

- x(Q)] + v*(S* n R*). 

If S^UR* = T* then 

(4.7)      Max  rv((SuR) U Q) - x(Q)] s x(T^ )+,.. +x(T^ ) = 
Q:Q c N-T" J1        Ja 

= v*(S*UR*), 

because x belongs to the core of r.  In any case (4.6) holds. 

The following lemma furnishes much information concerning 

particular Q'a for which the maxima in (4.5) are achievedo 

LEMMA 4.2; Let r ■ (N;v)  be a convex game and let x 

be an arbitrary n-tuple. Let R be a coalition in  G1(x) 

and let S1t Sp be subsets of R and N-R, respectively. 

Suppose that Q1  and Qp are subsets of N-R and R, 

respectively, such that 

(4.8) Max   e(31UQ,x) = e(S1UQ1,x) 
Q:Q c N-R   ' '  1 

(4.9) Max  e(39UQ,x) = e(30UQ9,x)a 
Q:Q c R   d u     d 

Let    R U Q1    and    Q2    belong to     %  1(x)    and    ^ 2(x), 

respectively.     Under these  conditions 

(i) u-i  ^  i, 

(ii) u2 «  i, 

(iii) If    e(31   u ü1fx) /e(31,x)     then    |i1 <  i, 

(iv) If    e(S2  U Q2,x) / e(32  U  R,x)     then    u2 <  i. 
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PRQOr:  By (4.4), 

(4.10)  eCS^Q^x) + e(R.x) i eCRUQ1tx) + eCS^x), 

By definition, eCS^Q^x) i e(S1,x) and strong inequality 

holds if the condition in (iii) is satisfied.  Consequently, 

(4.11) e(R,x) « eCRUQ-px) 

and strong inequality holds if the condition In (iii) is satis- 

fied.  This proves (i) and (iii). 

By (4.4), 

(4.12) e(.c;2uQ2,x) + e(R.x) * e(S2UR,x) + e(Q2,x). 

By definition,    e(S2UQ2,x)  i e(S2UR)    and strong inequality 

holds if the  condition in  (iv) is satisfied.     Consequently, 

(4.13) e(R,x) *  e(Q2,x) 

and strong inequality holds if the condition in (iv) is satis- 

fied.  This proves (ii) and (iv). 

COROLLARY 4.3: Q1 and Q2 of Lemma 4.2 can be chosen to be 

unions of fequivalence classes of stage i + 1  in the profile 

of x. 

PROOF: This follows irom cases (i) and (ii) of Lemma 4.2 and 

from Lemma 2.6. 

COROLLARY 4.4.-  If R€ 01(x) then 

(4.14)    Max  e(SuQ.x) = e(S ,x)   whenever S c R. 
Q:Q cN-R   
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(4.15) Max  e(SUQ,x) = e(SURfx) whenever S c N-R. 
Q:Q c R 

PROOF1  Cases (iii) and (iv) of Lemma 4.2. 

Lemma 4.2 can be effectively used in devising programs 

for computing the pseudo-kernels (and the kernels) for convex 

games.  Note that it can be applied to any stage-game (T*;v*) 

of a stage greater than i, when the union of the members of 

T*  is equal to R.  We shall subsequently apply the lemma for 

the particular cases 1 = 1,2 and the stage-games being the 

stage m + 1. 

We shall now add the assumption that x belongs to the 

core of the game, and treat the collection cü ix)    defined by 

(4.16) S)U)  = {S:S / ^,N and e(S,x) » e(R,x) 

whenever R / ^fN}. 

LEMMA A.5'-     If x belongs to the core of a game r ■ (N;v) 

then either ^(x) U [0]  U {N) =  l|1(x)  or J0(x) = (§2(x), 

in which case  Qp (x) = (^,N}.  In the first case OZAX) 

induces on N the equivalence classes of the second stage 

of the profile generated b^ x;  in the second case it 

induces on N the equivalence classes of the third stage 

of the profile generated by x,  the second stage being {N}. 

The proof is straightforward. 

LEMMA 4.6;  Let r ■ (N,v)  be a convex game and let x 

belong to the core of r.  If RtiOix)    then 

•■ 
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(4.17) Max   e(SUQ,x) = Max [e(S,x), e(S u(N-R)fx)] 
Q:Q c N-R 

whenever  S c R, 

(4.18) Max  e(SuQ,x) = Max fetS.x), e(SuR,x)] 
Q:Q c R 

whenever S c N-R. 

PROOF: Corollary 4.4, if X) U)  c b1(x).  If this is not the 

case then, by Lemma 4.5, * (x) ={^,N) and ^(x) = O (x). 

The result now follows from Lemma 4.2. 

COROLLARY 4.7; Let r ■ (N;v) be a convex game and let x 

belong to its core. Let R be a coalition in jD{*)    and 

consider the stage games (TJJ; vj) and (Tj_R; VJ5_R) of any 

stage i,  such that the union of the members of T^ is, equal 

to R and the union of the members of TJt D is N-R.  Under 

these conditions 

^VR ^R3 = x(R) 

(4.19)^ vj (S*) = Max [v(S). v(S U(N-R)) - x(N-R)], 

T* / S* c T*R 

^N-R (TN-R3 = ^-^ 

(4.20)^v*_R(S*) = Max [v(S). v(SUR) - x(R)], 

Tif.h ^ S* C: TN-R- 

Here,  S . T^ U T^ U...U T^  if  S* = {T^ , T^ ,..., rj ). 
M1   M2       ^ M1  u2      Mp 
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5.  Completely Separating Near Ring Collections. 

"Definition 3.1. A collection ö of subsets of a set N is 

called a near-ring* if, 

(5.1)  AtB €& ^AUB = N  or AOB = ^ or both AUB and 

AOB belong to & . 

LEMMA 3.2;  If T is. a convex game and x is^ an arbit- 

rary n-tuple then $J (x)     (see (4.16J is a near-ring. 

PROOF; Combine (4.4) with (4.16). 

"Definition 5.3' A collection  ö of subsets of a set N is 

said to be completely separating (over N), if for each ordered 

pair (kjt) of elements of N, k ^ t, there exists a set in C: 

containing k and not containing t. 

"Definition 3.4i A collection  G of subsets of a set N is 

called separating (over N), if for each ordered pair (ktO 

of elements of N, if a coalition exists in ß , which 

contains k and does not contain I,     then another coalition 

exists in &    which contains t  and does not contain k. 

Let O     be a separating collection of subsets of N. 

Let T-j, T2,..., T  be the equivalence classes induced by 

*We are grateful to J. R. Isbell for suggesting this term. 

^M 
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&     on    N.     Let    IT'    be  a  subset  of    N    containing exactly one 

member from each equivalence  class.     Clearly,   the collection 

(a     E  {SmT'lSCo}     is completely separating over    IT'. 

The  study of  the separating and  the  completely separating 

collections has been quite useful to  the kernel  theory (see, 
e'g«i   [4])*.     In fact,   the separation condition in Theorem 2.7 

simply states that   O    .   ■   [SnTj|SeG   )     is  separating over the 
ml J 

i        1 equivalence class  T":.     ^ A particular case of this observation 

is: 

LSMMA 3.3s If T is a monotonic game with a non-negat've 

characteristic function and if x€ PX(r)  then  Jc/ (x) 

(see 4.16))  i£ a s^ ^arating collection. 

It will be convenient to associate with a collection 

ö = ^SL ,3 .,, ,S ) of subsets of N the characteristic 
b1   02      ba vectors ,. .. , where 

(5.2)  x^ = 
1  if i€S 

.0 if i^Sv,    v = 1,2,...,a. 

Definition 3.6; A collection ß = (S-i, Sp,. .. , S 1 of sub- 

sets of a set N  is called balanced, if positive constants 

c.], Cp,..., c  exist such that 

(5.3)  T    c xV =XN. 
v=1 v 

*See  [9] and [12] for additional  properties  of  separating 
collections. 
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s called minimal balanced if it is balanced and none of 

its proper sub-collections is balanced. 

ö  is called weakly balanced if (5.3) is satisfied by 

non-negative constants c.|,...,c .  The constants c.|,...,c 

are called balancing coefficients. 

Balanced and minimal balanced collections were introduced* 

and studied in [1] and [13]. They are useful to the study of 

various solution concepts such as the core (see [13]»[10]), 

the bargaining set (see [3]) and, as we shall see in this 

paper, the kernel.  See [8] for additional information con- 

cerning their structure. 

LEMMA 5.7' A balanced collection is separating. 

The proof is straightforward.  The converse statement, however, 

is not true.  Indeed, any set of six minimal winning coalitions 

in the V-person projective game is complately separating and 

not even weakly balanced. It turns out, however, that imposing 

a near-ring requirement is a remedy: 

*0. N. Bondareva uses the term (q-9) - covering [reduced 
(q_e) - covering] to denote the pair consisting of weights 
and a collection of characteristic vectors of a balanced 
[minimal balanced] collection (see [1]). It was convenient 
in [13] to rule out the collection {Nj. 
not needed here. 

This exception is 



26 

THEOREM 3.8t A separating near-ring collection ö  of 

subsets of a set N = {1,2,... ,11)  which contains at 

least one non-empty subset is weakly balanced. 

PROOF:  There is no loss of generality in assuming that CD  is 

completely separating.  It is immediately varified that the 

theorem holds for n = 1.  We shall therefore also assume that 

n i 2. Let Q.   ■ {S:S€ 6 , i^S}. Let ^ ~ denote the set 

of elements .jf o.  which are maximal under inclusion;  we 

shall show that (j 7 is a partition of N - {!}.  Indeed, it 

follows from the complete separating property that each member 

of N - {i)  belongs to at least one element of S,.  By the 

near-ring property, the elements of O ^ are disjoint.  The 

collection  g~ ■ J3~ UG?2U,,,U ^n  i3 balanced« In fact, 

if c(S) is the number of elements  i such that SC S T. 

then c(S)/(n-1)  is a balancing coefficient for S in G? . 

this completes the proof. 
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6.  The Kernel and the Paeudo Kernel in Convex Games. 

Let T ■ (N;v)  be an n-person game whose characteristic 

function merely satisfies 

(6.1)   v(N) i v({1}) +...+ v({n}), v(i2f) = 0. 

An n-tuple  (x-, »Xg,... ,x )  satisfying 

(6.2) ^ a v({i}), i = 1,2,...,n, x(N) = v(N) 

will be called an imputation. 

An imputation x is said to belong to the kernel K = K(r) 

of T  (for the grand coalition), if (see(2.7)) 

(6.3)   sk t(x) < al  k(x) or x^ = v({tl) for all k,teN, 

k / t. 

Note that, unlike the pseudo-kernel, the kernel is a 

relative invariant under strategic equivalence. For this 

reason, the kernel is more interesting from the game theoretic 

point of view. Note, however, that if v({i}) = 0, i = 1,2,...,n, 

then the kernel and the pseudo kernel coincide.  For this reason, 

it is often possible to use the structure of the pseudo-kernel 

in order to obtain properties of the kernel.* 

*The need to pass to the pseudo-kernel often stems from 
the fact that Theorem 3.6 and various variants of it are not 
true if PX is replaced by K. 



28 

LEMMA  6. 1!     If    F  s   (N;v)    .is. a  ^ame  with a non-negative 

characteristic function then 

(6.4) PK(r)  n   [x\xi 2 v({i}),     i  =  1,2,...,n} c K(r). 

PROOF:  Compare (6.3) with (2.7). 

THEOREM 6.2;  If F ■ (N;v) .is a convex game with a non- 

negative characteristic function then 

(6.5) PK(r) = K(r). 

PROOF! Let x€ PK(r).  It has been proved in* [6] that x 

belongs to the core of the game.  Thus, by (3.2) and (6„4), 

x€ K(r).  Conversely, let xC K(r)  and let T* 2 (N;v*) be a 

game which is strategically equivalent to F,  for which 

v* ({!]) =0,  i = 1,2,...,n. Let x* be the corresponding 

payoff. Clearly,  x*€K(r*) = PK(r*),  because the kernel is 

a relative invariant under strategic equivalence. Moreover, 

T*  is a convex game because convexity is invariant under 

strategic equivalence.  In particular T*  is monotonic and 

therefore (see (2.8)a)  s* t(x*) = sj k(x*)  for all k,t, k / t, 

where stars refer to entities with respect to F*.  The latter 

equalities, however, imply s, ,ix)  =  s. ).(x) for all k,^, 

k / t.  Consequently x€ PKCF), 

*Theorems 2.4 and 2.11 of [6] actually refer to the kernel, 
but ommitting the requirement v({i]) =0,  i = 1,2,...,n, 
which appears in the proofs make them valid proofs for the 
pseudo-kernel. 
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Theorem 6.2 enables us to use results concerning the 

pseudo-kernels of convex games with non-negative characteristic 

functions in order to deduce properties of the kernels of such 

games.  In as much as such properties are invariant under 

strategic equivalence they will remain true also for convex 

games which clearly satisfy (6.1). 

I 

^Hh 
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7.       The Kernel of a Convex Game Consists of a Unique Point. 

Characterizing its Location. 

As  stated at  the  end of  the  previous section,   the first 

statement  in  the  title of this  section will  be proved if we 

show: 

THEOREM 7.1:     The  pseudo-kernel   (for the grand  coalition) 

of a convex game with a non-negative characteristic 

function consists of a unique point. 

PROOF:     Let     x,y€ PK{r).     "Denote 

(7.1) jD(x)  =  {3:S / N.^,   e(3,x)  2 e(P,x)    whenever 

P / iM} 

(7.2) iD(y)  =  {R:R / N.0,   e(R,y)  2 e(P,y)     whenever 

j P / 0,N} 

(7.3) a(x)   = e(3,x),   SeÄx) 

(7.4) s(y)   = e(R.y),   R€(SD(y) 

Without loss  of generality one may assume that 

(7.5) 3(x)   « s(y). 

The theorem certainly holds for l-person and 2-per3on games. 

We shall proceed by induction, assuming that n 2 3. 
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A. dJiy)    i3 a separating near-ring (Lemmas 5.2 and 5.5) 

which contains a non-empty subset of N;  hence it contains a 

balanced collection R H [R1,R2,...,R }  (Theorem 5.8).  If 

It-l/^U)  then e(R.,x) < s(x) s s(y) = e(R.,y).  Consequently 

»(R.) > y(Ri). If Ri€tfC/(x) then we can only conclude that 

x(R.) i /(R^). Multiplying these inequalities by the balancing 

coefficients, we obtain x(N) » y(N)f  with equality occuring 

only if R c$C)(x) and s(x) = s(y).  But equality mus u occur 

because x(N) = v(N) = y(N); hence we concluds that there 

exists a set R in cO {*)  0 J){y)    and, moreover, 

(7.6)   x(R) = y(R).    x(N-R) = y(N-R). 

B. Let m(x) + 1  be the last stage of the profile of x 

and let m(y) + 1  be the last stage of the profile of y. 

Consider the stage games (
T
R;
V
R) 

and  ^N-R'VN-R^ as defined 

in Corollary 4.7, with respect to x and for i = ra(x) + 1. 

Consider also the analogous stage games  ^D*; VR* ) and 

(T** ; v** ) with respect to y and for i = m(y) + 1.  The 
N-R  N-R 

players in these stage games are 1-element sets. 

Since x and y belong to PK(r), they a fortiori belong 

to the core of T  (see the proof of Theorem 6.2).  By Theorem 

4.1, all these games are convex and have a non-negative 

characteristic function;  consequently they are monotonic. 

Without loss of generality we may assume that R = (1,2,...,r]. 

We can now use Theorem 3.6 to conclude that 
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(7.7) (x1,...,xr) € PK(TjJ; v*), 

{xr+1,....xn) ePK (T*_R; v*_R), 

(7.8) (y1 yr) € PK(TJ*; v** ), 

However, because of (7.6) and Corollary 4.7,  (T^; vR) and 

(TQ*; VR*) are the same game since they have the same set of 

players and the same characteristic function.  Similarly, 

(Tj_R; vJ_R) and  (Tj5*R; vj5*R)  are the sane game.  The same 

games possess the same pseudo-kernel.  Since all these games 

have fewer than n players, we can use the induction hypothesis 

to conclude that their pseudo-kernels consist of unique points. 
■ 

Consequently, by (7.7) and (7.8), x = y.  This completes the 

proof in view of the fact that the pseudo-kernel is not 

empty (see [4]). 

Corollar.y 7.2:  The kernel (for the grand coalition) of a 

convex game consists of a unique i jint. 
i 

Corollar.y 7.2 brings to an end the main purpose of this 

study.  We now know exactly the shape of the kernel of a 

convex     game;  namely, a unique point.  There remains, 

however, the problem of locating this point - preferably in 

geometrical terms.  Fortunately, general theorems are available 

in the literature which will enable us to complete our task: 

In [11], "D. Schmeidler introduced the nucleolus of the game 
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and proved that it is a subset of the kernel consisting of a 

unique point.  In view of this result and Corollary 7.2 we can 

now state: 

Corollary 7.3'  The kernel and the nucleolus of a convex game 

(for the grand coalition) coincide. 

In [7], we present a characterization of the nucleolus 

for a general cooperative game. For games with a non-empty 

core it coincides with the lexicographic core defined as 

follows: 

Let r« ■ F s (N;v) be an n-person game, n * 2, whose 

core is not empty. We shall construct games 

ri ■ CN;-^), Fp ■ (N;v2),..., rm« (N;^) over the same set of 
are 

players N, whose characteristic functions / defined induct- 

ively by 

(7.9) /'v. .,(3)      if  S€^(r, J 

v.(S) = 

i_1 Vk^''      xx     «J^t/mi ji 

v^ts) + 6. if s^fctr^). 

Here, 

(7.10) ^(^j^^i) « (S|e(S,x) = 0 whenever x belongs to 

the core of ri_i} 

and 6.  is maximal under the requirement that T-     has a non- 

empty core. The last game f  is characterized by the 

requirement that it is the first game in the sequence which 

is inessential. 

■ ■ 
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"Definition 7.4; The lexicographic core of r is the core of r 

Note that the lexicographic core is a point whose location 

can be described in geometric terms, regarding the core as a 

fundamental set. Its location can be obtained by "pushing 

inside" at equal -t-i-distances the appropriate hyperplanes 

which determine the core* - stopping the push of a hyperplane 

only when it causes the inside to become empty. 

By Corollary 7-3» and since a convex game has a non- 

empty core,we can finally state: 

THEOREM 1.5'-     The kernel of a convex game coincides with the 

lexicographic core. 

m 

*Another way o'f putting it:  "pushing inside" these hyper- 
planes in such a way that their intersections with the axes 
indexed by the members of the corresponding coalitions move 
equal distances. 
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